
Example 4 
 

Question: write a grammar for a^nb^n 

 

Answer:  Sure! Here's a context-free grammar for the language of strings of the form "a^n b^n": 

 

S -> ab 

S -> aSb 

 

Explanation: 

• The start symbol is S. 

• The production rule S -> ab generates the base case where there is one "a" followed by 

one "b". 

• The production rule S -> aSb generates strings with one or more "a"s followed by an 

equal number of "b"s. 

Using this grammar, you can derive strings of the form "a^n b^n" where n is a positive integer. 

For example, applying the production rules, you can derive the following strings: 

S -> aSb -> aaSbb -> aaaSbbb -> aaaaSbbbb -> aaaaabbbbb 

 

Each application of the production rule S -> aSb adds one "a" and one "b" to the string. 

Please note that this grammar only generates strings of the form "a^n b^n". It does not generate 

strings with unmatched "a"s or "b"s or any other variations. 

 

 

Question: design an NPDA for a^nb^n 

 

Answer: Sure! Here's a design for a Non-Deterministic Pushdown Automaton (NPDA) that recognizes the 
language of strings of the form "a^n b^n": 
 
States:  
- q0 (initial state) 
- q1 
- q2 
- q3 (final state) 
 
Alphabet: {a, b} 
 
Stack alphabet: {Z0} (Z0 is the initial stack symbol) 



 
Transitions: 
1. (q0, a, Z0) -> (q1, Z0) 
2. (q1, a, Z0) -> (q1, aZ0) 
3. (q1, b, a) -> (q2, epsilon) 
4. (q2, b, a) -> (q2, epsilon) 
5. (q2, epsilon, Z0) -> (q3, Z0) 
 
Explanation: 
- The NPDA starts in the initial state q0 with the initial stack symbol Z0 on top of the stack. 
- When it reads an 'a' in state q0, it transitions to state q1 and pushes Z0 on the stack. 
- In state q1, for each 'a' encountered, it stays in q1 and pushes 'a' on the stack. 
- When it reads a 'b' in state q1, it transitions to state q2 and pops an 'a' from the stack. 
- In state q2, for each 'b' encountered, it stays in q2 and pops an 'a' from the stack. 
- After reading all the 'b's, if the stack is empty (epsilon transition in q2), it transitions to the final state 
q3. 
 
Acceptance: 
- The NPDA accepts the input string if it ends in the final state q3 and the stack is empty. 
 
This NPDA recognizes the language of strings of the form "a^n b^n", where n is a non-negative integer. It 
matches the number of 'a's with the number of 'b's by using the stack to keep track of the 'a's. 
 
 

 

Question: design an NPDA for a^nb^n and sigma={a,b} 

 

Answer: Here's the correct design for an NPDA that recognizes the language of strings of the form 
"ww^R": 
 
States: 
- q0 (initial state) 
- q1 
- q2 
- q3 
- q4 (final state) 
 
Alphabet: {a, b} 
 
Stack alphabet: {Z0} (Z0 is the initial stack symbol) 
 
Transitions: 
1. (q0, epsilon, Z0) -> (q1, Z0) 
2. (q1, a, Z0) -> (q1, aZ0) 
3. (q1, b, Z0) -> (q1, bZ0) 
4. (q1, epsilon, epsilon) -> (q2, Z0) 
5. (q2, a, a) -> (q2, epsilon) 
6. (q2, b, b) -> (q2, epsilon) 



7. (q2, epsilon, Z0) -> (q3, Z0) 
8. (q3, a, a) -> (q3, epsilon) 
9. (q3, b, b) -> (q3, epsilon) 
10. (q3, epsilon, Z0) -> (q4, Z0) 
 
Explanation: 
- The NPDA starts in the initial state q0 with the initial stack symbol Z0 on top of the stack. 
- In state q1, it reads the input symbols and pushes them onto the stack. 
- After reading all symbols, it transitions to state q2 to reach the middle of the string. 
- In state q2, it pops the symbols from the stack without comparing them to the input string. 
- In state q3, it matches each symbol on the stack with the remaining input symbols by popping them. 
- If all symbols are matched and the stack is empty, it transitions to the final state q4. 
 
Acceptance: 
- The NPDA accepts the input string if it ends in the final state q4 and the stack is empty. 
 
This NPDA recognizes the language of strings of the form "ww^R", where w is any string of symbols from 
the alphabet {a, b} and w^R denotes the reverse of w. The NPDA pushes the input symbols onto the 
stack, then reaches the middle of the string, and finally matches the symbols in a deterministic manner 
to check for the palindrome-like structure. 
 
 

Question: prove that a^nb^n is not regular 

 

Answer: To prove that the language L = {a^n b^n | n >= 0} is not regular, we can use the pumping lemma 
for regular languages. The pumping lemma states that if L is a regular language, there exists a pumping 
length p such that any string s in L with |s| >= p can be divided into three parts: s = xyz, where: 
 
1. |xy| <= p, 
2. |y| > 0, and 
3. for all k >= 0, the string xy^kz is also in L. 
 
Now, let's assume that L = {a^n b^n | n >= 0} is regular and consider a pumping length p for this 
language. 
 
Let's take the string s = a^p b^p. According to the pumping lemma, we can divide s into three parts: s = 
xyz, where |xy| <= p and |y| > 0. 
 
Now, consider the possible cases for the placement of x, y, and z within s: 
 
1. If y consists only of a's (i.e., y = a^k for some k > 0), then pumping up (k > 1) will result in a string that 
contains more a's than b's, violating the condition that the number of a's should be equal to the number 
of b's. 
2. If y consists of both a's and b's (i.e., y = a^m b^k for some m > 0 and k > 0), then pumping up (k > 1) 
will either introduce more a's after the b's or move the b's ahead of the a's, violating the condition that 
the a's should come before the b's. 



3. If y consists only of b's (i.e., y = b^k for some k > 0), then pumping down (k > 1) will result in a string 
that contains more b's than a's, violating the condition that the number of a's should be equal to the 
number of b's. 
 
In all cases, pumping up or down will lead to a string that is not in the language L = {a^n b^n | n >= 0}. 
Therefore, we have reached a contradiction, which means that our assumption that L is regular is 
incorrect. 
 
Hence, we can conclude that the language L = {a^n b^n | n >= 0} is not a regular language. 
 
Question:  This is wrong. Cases 2 and 3 cannot happen because |xy| <= p 
 
Answer: Apologies for the incorrect response. You are correct, cases 2 and 3 cannot happen in this 
particular language. Let's provide a corrected proof: 
 
To prove that the language L = {a^n b^n | n ≥ 0} is not regular, we can use the pumping lemma for 
regular languages. The pumping lemma states that if L is a regular language, there exists a pumping 
length p such that any string s in L with |s| ≥ p can be divided into three parts: s = xyz, where: 
 
1. |xy| ≤ p, 
2. |y| > 0, and 
3. for all k ≥ 0, the string xy^kz is also in L. 
 
Let's assume that L = {a^n b^n | n ≥ 0} is a regular language. According to the pumping lemma, there 
exists a pumping length p for L. 
 
Consider the string s = a^p b^p, where |s| = 2p ≥ p. According to the pumping lemma, we can write s as 
s = xyz, satisfying the conditions of the lemma. 
 
Based on the pumping lemma conditions, we have the following possibilities for the division of s = xyz: 
 
1. The substring y consists of only a's (y = a^k, where 0 < k ≤ p). 
   - In this case, pumping up (k > 1) will result in a string where the number of a's exceeds the number of 
b's, violating the condition that the number of a's should be equal to the number of b's. 
 
Since we cannot pump the string in a way that maintains the equal number of a's and b's, we have a 
contradiction to the pumping lemma. Therefore, our assumption that L is a regular language must be 
incorrect. 
 
Hence, we can conclude that the language L = {a^n b^n | n ≥ 0} is not a regular language. 
 

 


